Lesson

Estimate life-cycle cost of ITS technologies as part of procurement estimates in order to assess the range of yearly maintenance costs.

Experience from iFlorida Model Deployment


01/30/2009
Florida,United States


Background (Show)

Lesson Learned

During the course of the iFlorida evaluation, several approaches were discussed for reducing the overall costs of owning and operating traffic monitoring equipment. These approaches are discussed below.
  • Consider life-cycle cost during the procurement process. The contract for the iFlorida field devices included the cost for deploying the field devices and providing a maintenance warranty for two years after the deployment was complete. The expected cost of maintenance after this two-year warranty period would not be reflected in the procurement cost. Because of this, a system that has a lower procurement cost could have a higher life-cycle cost. In particular, a system that was less expensive to install but had higher maintenance costs could result in a low procurement cost (because only two years of maintenance costs are included), but a high life-cycle cost. A department may want to compare the full life-cycle cost of a deployment rather than the procurement cost when evaluating deployment contracts.
  • Consider participating in the ITS Benefits and Costs Databases maintained by the U.S. DOT. Considering the full life-cycle cost of a deployment requires estimating future failure rates for installed equipment and the costs of repairs. A good approach for doing so is to obtain information from other deployments of the technologies. U.S. DOT established the ITS Costs database (www.itscosts.its.dot.gov) to help departments share information about the costs of deploying and maintaining ITS field equipment. Because of limited participation by agencies deploying ITS technologies, the information in this database is limited. Agencies should consider tracking costs and submitting their costs to this database so as to benefit others deploying similar technologies.
  • Consider tracking the causes of equipment failures to help decrease maintenance costs. FDOT used a spreadsheet to track failed equipment and assign work orders for repairs. FDOT's maintenance contractor was expected to identify the root cause of failures that occurred. However, they did not provide this information to FDOT. This made it difficult for FDOT to identify common causes of failures so that they could take action to reduce the prevalence of those causes. Even though FDOT was proactive in trying approaches to reduce failures, such as adding surge protectors and lightening protection. The lack of ready access to detailed failure data made it difficult to determine if these approaches were successful.
It is evident from the above experience that agencies should conduct estimates for not only the one-time procurement but also the life-cycle cost in order to estimate the yearly maintenance costs they would incur. Agencies are encouraged to submit costs data to the U.S. DOT’s ITS Costs Database so that other agencies considering similar technology deployments can benefit from the past experiences. Maintenance contractors should diligently record the equipment failures so that the root causes of repeated failures were identified and remedial measures put in place. These lessons are anticipated to help reduce maintenance costs and increase productivity of the maintenance staff.


Lesson Comments

No comments posted to date

Comment on this Lesson

To comment on this lesson, fill in the information below and click on submit. An asterisk (*) indicates a required field. Your name and email address, if provided, will not be posted, but are to contact you, if needed to clarify your comments.



Source

iFlorida Model Deployment Final Evaluation Report

Author: Robert Haas (SAC); Mark Carter (SAIC); Eric Perry (SAIC); Jeff Trombly (SAIC); Elisabeth Bedsole (SAIC): Rich Margiotta (Cambridge Systematics)

Published By: United States Department of Transportation Federal Highway Administration 1200 New Jersey Avenue, SE Washington, DC 20590

Source Date: 01/30/2009

EDL Number: 14480

URL: http://ntl.bts.gov/lib/31000/31000/31051/14480.htm

Other Lessons From this Source

Lesson Contacts

Lesson Analyst:

Firoz Kabir
Noblis
202-863-2987
firoz.kabir@noblis.org


Rating

Average User Rating

0 ( ratings)

Rate this Lesson

(click stars to rate)


Lessons From This Source

Assess security risks, threats, vulnerabilities, and identify countermeasures to ensure operations of transportation management centers.

Be flexible to use data from various sources, such as the highway police patrol’s incident data, user feedback, and monitoring stations, to develop a statewide traveler information system.

Beware of challenges involved in developing an integrated statewide operations system for traffic monitoring, incident data capture, weather information, and traveler information—all seamlessly controlled by a central software system.

Beware of costs, utility, reliability, and maintenance issues in deploying a statewide transportation network monitoring system.

Beware of the limitations of using toll tags in order to calculate travel time on limited access roadways and arterials.

Beware that software development for ITS projects can be utterly complex, which demands avoiding pitfalls by following a rigorous systems engineering process.

Define a vision for software operations upfront and follow sound systems engineering practices for successfully deploying a complex software system.

Deploy a variable speed limit system only after the software systems required to support it are mature and reliable.

Design traffic video transmission systems around the constraints of bandwidth limitations and provide provisions for remote configuration of video compression hardware.

Develop an accurate, map-based fiber network inventory and engage ITS team in the construction approval process.

Develop an effective evacuation plan for special event that gathers a large audience and consider co-locating the responding agencies in a joint command center.

Ensure compatibility of data format of the field-weather monitoring sensors with the central software in the transportation management center.

Ensure that experienced staff oversee the development of a complex software system and thoroughly follow systems engineering process.

Ensure that Highway Patrol's CAD system operators enter key information needed by the transportation management center operators.

Establish a well defined process for monitoring and maintenance before expanding the base of field equipment.

Estimate life-cycle cost of ITS technologies as part of procurement estimates in order to assess the range of yearly maintenance costs.

In developing software for automated posting of messages on dynamic message signs, focus on the types of messages that are used often and changed frequently, and also include manual methods for posting.

Incorporate diagnostic tools to identify and verify problems in the transmission of video in a transit bus security system.

Perform adequate analyses and tests to design, calibrate and validate the capabilities of a bridge security monitoring system in order to reduce false alarms.

To support statewide traveler information services, design and implement reliable interface software processes to capture incident data from the local and highway patrol police’s computer aided dispatch systems.

Use simple menu choices for 511 traveler information and realize that the majority of callers are seeking en route information while already encountering congestion.

Application Areas

None defined

States

Florida

Countries

United States

Focus Areas

None defined

Goal Areas

Productivity

Keywords

None defined

Lesson ID: 2009-00496