Using advanced technologies reduces overall safety and security vulnerabilities by as much as 37 percent according to analyses in the HAZMAT FOT Final Synthesis.

FMCSA researchers assessed technologies to improve the productivity, efficiency, and safety of HAZMAT Carriers in the United States.

Date Posted
11/19/2013
Identifier
2013-B00881
TwitterLinkedInFacebook

Hazardous Materials Safety and Security Technology Field Operational Test Volume II: Evaluation Final Report Synthesis

Summary Information

This HAZMAT Safety and Security Technology field operational test was conducted working towards the goals of improving homeland security protection of truck-based hazardous materials shipments. This field operational test was designed to test the ability of commercially available technology systems to reduce vulnerabilities in HAZMAT shipping while providing sufficient returns on investment to motor carriers to encourage deployment. These technologies promise to enhance not only security, but also operational efficiencies and potentially, safety.

There are approximately 800,000 HAZMAT shipments per day with many involving materials that could be used for terrorist attacks with staggering potential consequences in terms of deaths, injuries, property damage, and business disruption. With resources in limited supply and many security threats to contend with, HAZMAT trucking requires implementing solutions that are currently available, reduce risk, and that provide tangible and quickly realized benefits to stakeholders proportional to their level of investment. This evaluation examined the technical and financial performance of several promising technologies for increasing the security of HAZMAT shipments to determine what levels of operational efficiency and security benefits can be attained through deployment. This was a first of a kind study that focused on analysis relating to security benefits. This effort called upon the input and guidance of many nationally recognized experts in HAZMAT shipping, security and counter-terrorism, and risk analysis and management, to assess the capabilities of the technology systems tested in this test. The field operational test duration was 18 months.

The field operational test deployed different technology combinations. Wireless mobile communications technologies consisted of satellite and terrestrial communications with GPS-provided vehicle tracking and two-way communications between the driver and dispatcher. Digital phone tracking without GPS provided integrated work order assignment and messages between the dispatcher and driver.

In-vehicle technologies consisted of on-board computers, panic buttons and electronic cargo seals. On-board computers process data by receiving and analyzing information from sensors and devices on the vehicle. The computers store and present the information in a convenient and easily accessible manner. On-board computers provide vehicle disabling and remote locking/unlocking capability. Panic Buttons provide real-time emergency alert messaging notification and localized vehicle shutdown. Electronic cargo seals utilize short-range wireless communications to automatically generate an alert if the seal is broken without proper authorization.

Personal identification technologies consisted of biometrics and a personal identification number. Biometrics consists of technologies that analyze human characteristics (eyes, facial recognition, fingerprint, hand geometry, etc.) for verification of identity and access. This field operational test used fingerprint recognition technology.

Mobile data management used smart card technology to enable the electronic supply chain manifest (ESCM) system. The ESCM system combines biometric verification, smart cards, Internet applications, and the on-board wireless communications system to ensure proper chain-of-control.

Vehicle tracking used routing and Geofenced mapping software to put a "virtual fence" around a vehicle's intended route and automatically notify dispatch and operations personnel when the vehicle deviates from the route. Trailer tracking consisted of both tethered tracking, which provides connect and disconnect events, and untethered tracking which is combined with Geofencing to provide security to the unconnected trailer.

Different combinations of these technologies were used within four hazmat cargo truck types.

The primary evaluation objective of the Security Benefits Assessment is to examine the ability of the test technology suites to improve HAZMAT shipment security. This objective is achieved by assessing the test technology suites' (and technologies with similar functionality available in the marketplace) in coordination with reasonable security processes and procedures to reduce the vulnerabilities in truck-based HAZMAT shipping, and thus, reduce the risk of successful HAZMAT-based terrorist attacks. The assessment analyzes the potential security impacts (consequence reduction) related to HAZMAT attacks.

FINDINGS

Security Benefits Assessment

Figure 1: Percent Reduction in Overall Vulnerability by Load Type and Technology
Technology
Bulk Fuel
LTL-High Hazard
Bulk Chemicals
Truckload Explosives
Wireless Communications (WC)
15%
13%
12%
11%
WC + GPS Position
17%
16%
16%
12%
Panic Alert + (WC + GPS Position)
27%
25%
25%
21%
Driver ID + (WC + GPS Position)
25%
25%
23%
18%
Vehicle Disabling + (WC + GPS)
26%
27%
26%
19%
Cargo Seals + (WC + GPS Position)
NA
25%
NA
18%
Cargo Door Locks + (WC + GPS Position)
NA
24%
NA
18%
PSRC (WC + GPS)
24%
25%
24%
20%
ESCM (WC + GPS)
25%
26%
23%
18%
Panic Alert + Vehicle Disabling + (WC + GPS)
32%
32%
31%
25%
Panic Alert + Driver ID + Vehicle Disabling (WC + GPS Position)
36%
37%
34%
27%
Panic Alert & Driver ID + ESCM (WC + GPS Position)
35%
36%
33%
26%
Panic Alert + Driver ID + Vehicle Disabling + Cargo Seals (WC + GPS Position)
NA
36%
NA
26%
Panic Alert + Driver ID + Vehicle Disabling + Cargo Door Locks (WC + GPS Position)
NA
35%
NA
26%

Figure 2: Estimated Security Benefits by Load Type and Technology (In Millions of Dollars)

Technology
Bulk Fuel
LTL-High Hazard
Bulk Chemicals
Truckload Explosives
Wireless Communications (WC)
$548
$268
$1,917
$1,409
WC + GPS Position (Baseline)
$622
$348
$2,581
$1,657
Panic Alert + (WC + GPS Position)
$995
$529
$4,058
$2,822
Driver ID + (WC + GPS Position)
$933
$537
$3,730
$2,345
Vehicle Disabling + (WC + GPS)
$970
$573
$4,278
$2,556
Cargo Seals + (WC + GPS Position)
NA
$529
NA
$2,345
Cargo Door Locks + (WC + GPS Position)
NA
$513
NA
$2,400
PSRC (WC + GPS)
$908
$525
$3,891
$2,652
ESCM (WC + GPS)
$946
$553
$3,730
$2,400
Panic Alert + Vehicle Disabling + (WC + GPS)
$1,207
$689
$5,098
$3,355
Panic Alert + Driver ID + Vehicle Disabling (WC + GPS Position)
$1,331
$776
$5,539
$3,547
Panic Alert & Driver ID + ESCM (WC + GPS Position)
$1,318
$755
$5,319
$3,510
Panic Alert + Driver ID + Vehicle Disabling + Cargo Seals (WC + GPS Position)
NA
$755
NA
$3,469
Panic Alert + Driver ID + Vehicle Disabling + Cargo Door Locks (WC + GPS Position)
NA
$747
NA
$3,510

This report, finalized in November 2004, is an assessment of research focusing on the use of technology to address HAZMAT safety and security. These findings along with the benefits provide a valuable resource to those considering the implementation of advanced technology for freight security and safety.

Goal Areas
Deployment Locations